What’s an LCD HDTV?
|
LCD Television BASICS (Liquid Crystal Display)
Liquid-crystal display televisions (LCD TV) are television sets that use LCD technology
to produce images. LCD televisions are thinner and lighter than CRTs of similar display
size, and are available in much larger sizes as well. This combination of features
made LCD’s more practical than CRTs for many roles, and as manufacturing costs fell
their eventual dominance of the television market was all but guaranteed.
In 2007, LCD televisions surpassed sales of CRT-based televisions worldwide for the
first time, and its sales figures relative to other technologies is accelerating.
LCD TVs are quickly displacing the only major competitors in the large-screen market,
the plasma display panel and rear-projection television. LCD’s are, by far, the most
widely produced and sold television technology today, pushing all other technologies
into niche roles.
Ok let’s cover some of the basics here. A Liquid crystal display is used in lots
of devices. Most common devices that use LCD displays are clocks, microwaves, car
stereo systems, and yes HDTV’s.
|
Life Span of a High Definition LCD (liquid crystal display) Television
If your looking for an HDTV to last a good while than LCD is a great way to go! Most
LCD HDTV’s are rated for 60,000 hours, up to 80,000 hours depending on the manufacture
and rated life span of the bulb. Most LCD HDTV’s will last longer than a Plasma TV.
An LCD HDTV will usually last as long as the bulb inside the TV. Just like any bulb
dims over a period of years, so will an LCD HDTV Bulb. To calculate the years figure
out how many hours you watch per day and multiply that by 365. Then divide that by
the rated hours of the LCD TV you have or the one your going to purchase. Assuming
your electronics, circuits, and microchips out last the LCD panel your LCD TV should
be rated around 60,000 hours.
|
What will you be using your LCD Television for?
What are you going to be doing with your HDTV? Movies, video games, watching basic
TV or an alternate computer monitor?
Whatever your needs are will determine what features are more important than others.
If you are going to be watching mostly High Definition movies & gaming then screen
resolution, refresh rate, response time and contrast ratio should be some of your
considerations. If your going to be using your HDTV for basic TV viewing then you
might be more concerned with screen size and price. If your going to be using your
HDTV for an alternate computer monitor you might be more concerned with it’s input
options, screen resolution and aspect ratio. But whatever your heart desires there
is an HDTV solution out there to fit you need and budget. We will help you get there!
|
Specifications you need to know!
Okay, Lets get our first glimpse at what Specifications are going to be a deciding
factor in buying your new HDTV.
|
Aspect Ratio
Most LCD HDTV’s come in two different aspect ratios 4:3 and 16:9. Depending on what
you will be using your HDTV for should determine what aspect ratio you decide to
go with. 4:3 is your standard viewing size “regular TV size” 16:9 is your wide screen
size “movie screen dimensions”. You can make your decision based on a few factors.
If you have an entertainment center that is designed for a TV with a 4:3 aspect ratio
you will have to sacrifice screen size if you want to put a 16:9 aspect ratio HDTV
in that same entertainment center. If you are planing to upgrade your entertainment
center when you upgrade your HDTV then you should decide on what size TV you want
first and then find a entertainment center or HDTV stand that is tailored fit to
your new HDTV. Keep in mind that most HDTV’s on the market are 16:9 aspect ratio.
So finding exactly what you want in a 16:9 aspect ratio is more likely.
If you decide to stay with your current entertainment center then you should measure
it and shop your new HDTV according to you size requirements.
|
Native Screen resolution most manufactures offer 3 different types resolutions 1080p
(Progressive Scan) which equates to 1,920 x 1,080 pixels “This is the way to go if
you can afford it”, next in line is 720p (Progressive Scan) which equates to 1280
x 720 pixels. 3rd in line is 1080i which equates to 1,920 x 1,080 (interlaced) pixel
resolution but conveys the images in an interlaced format (which gives it the “I”
in 1080i for interlaced). Most HDTV channels broadcast in the last 2 resolutions
listed, 720p or 1080i is the standard broadcast formats for most cable, direct TV™,
and satellite feeds, the deciding factor should include your price range and what
type of media you will be viewing.
|
Refresh Rate is the rate at which the signal refreshes per second. The faster the
refresh rate the sharper the action and the image will be in fast paced media such
as football, action movies, etc. If your mostly going to be using your new HDTV for
TV shows than a lower refresh rate will be fine. But for you gamers and High Definition
action movie fans a refresh rate of 60 Fps to 120 Fps “Frames Per Second” will be
more desirable because the higher refresh rate keeps the image transition looking
smooth.
|
Response time is another very important factor you need to consider. Response time
represents the amount of time it takes for one pixel to go from active “black” to
inactive “white” and back to black again. It’s the speed at which an LCD panels crystals
“twist” to block and allow light to pass through. This process is measured in (ms)
milliseconds, the lower the number the faster it can change between active (black)
and inactive (white) Pixels. Another words the lower the milliseconds, the lower
the response time. The clearer the picture will be on the screen. You gamers, sports
fans & action movie fans should go with a lower response time. Slower response times
range around 20 milliseconds, faster response times are usually around 8 TO 2 milliseconds.
This millisecond factor can impact your purchase price by inches or miles. Shop for
a happy medium based on your needs and budget.
|
Contrast Ratio is the measurement used to show the difference in light intensity
between the brightest white and the darkest black.
Example: Contrast ratio will read something like, 300:1 or 500:1, and can even go
as high as 10000:1 and getting higher as technology advances! The higher the contrast
ratio “left number” the blacker the blacks will be to whites and will result in fewer
areas that look gray but are suppose to be black. Remember this is an important number
but you should always judge by your eyes. Simply put, what looks good is good! And
use the contrast ratio as a guide to get started in the right direction.
I would suggest determining your price range first, selecting your desired screen
size second. Then go to your local HDTV store and view your desired screen size,
Doing this will assure you get the right size HDTV with the best looking picture
for your budget! Remember a good balance between HDTV features is the smart way to
go! Check out our expert review matrix for great combinations of features, prices,
sizes Etc.
|
Viewing Angle of your LCD is a factor, not as important as most other factors, but
a factor. I would suggest not making this a big deal, you can usually sit at least
72 degrees off the axis and still see a perfect picture. Although most manufactures
state that there viewing angle is much more than this you will notice little decrease
in color saturation, brightness and contrast in the picture. Most LCD’s of today
are pretty much equal in this arena. But the question is will you actually need it?
|
Basic LCD concepts
LCD televisions produce a colored image by selectively filtering a white light. The
light is typically provided by a series of cold cathode fluorescent lamps (CCFLs)
at the back of the screen, although some displays use white or colored LEDs instead.
Millions of individual LCD shutters, arranged in a grid, open and close to allow
a metered amount of the white light through. Each shutter is paired with a colored
filter to remove all but the red, green or blue (RGB) portion of the light from the
original white source. Each shutter–filter pair forms a single sub-pixel. The sub-pixels
are so small that when the display is viewed from even a short distance, the individual
colors blend together to produce a single spot of color, a pixel. The shade of color
is controlled by changing the relative intensity of the light passing through the
sub-pixels.
Liquid crystals encompass a wide range of (typically) rod-shaped polymers that naturally
form into thin layers, as opposed to the more random alignment of a normal liquid.
Some of these, the nematic liquid crystals, also show an alignment effect between
the layers. The particular direction of the alignment of a nematic liquid crystal
can be set by placing it in contact with an alignment layer or director, which is
essentially a material with microscopic groves in it. When placed on a director,
the layer in contact will align itself with the grooves, and the layers above will
subsequently align themselves with the layers below, the bulk material taking on
the director's alignment. In the case of an LCD, this effect is utilized by using
two directors arranged at right angles and placed close together with the liquid
crystal between them. This forces the layers to align themselves in two directions,
creating a twisted structure with each layer aligned at a slightly different angle
to the ones on either side.
LCD shutters consist of a stack of three primary elements. On the bottom and top
of the shutter are polarizer plates set at (typically) right angles. Normally light
cannot travel through a pair of polarizers arranged in this fashion, and the display
would be black. The polarizers also carry the directors to create the twisted structure
aligned with the polarizers on either side. As the light flows out of the rear polarizer,
it will naturally follow the liquid crystal's twist, exiting the front of the liquid
crystal having been rotated through the correct angle that allows it to pass through
the front polarizer. LCDs are normally transparent.
To turn a shutter off, an electrical voltage is applied across it from front to back.
When this happens, the rod-shaped molecules align themselves with the electric field
instead of the directors, destroying the twisted structure. The light no longer changes
polarization as it flows through the liquid crystal, and can no longer pass through
the front polarizer. By controlling the voltage applied across the crystal, the amount
of remaining twist can be finely selected. This allows the transparency or opacity
of the shutter to be accurately controlled. In order to improve switching time, the
cells are placed under pressure, which increases the force to re-align themselves
with the directors when the field is turned off.
Several other variations and modifications have been used in order to improve performance
in certain applications. In-Plane Switching displays (IPS and S-IPS) offer wider
viewing angles and better color reproduction, but are more difficult to construct
and have slightly slower response times. IPS displays are used primarily for computer
monitors. Vertical Alignment (VA, S-PVA and MVA) offer higher contrast ratios and
good response times, but suffer from color shifting when viewed from the side. In
general, all of these displays work in a similar fashion by controlling the polarization
of the light source.
|
How Do They Build it!
A typical shutter assembly consists of a sandwich of several layers deposited on
two thin glass sheets forming the front and back of the display. For smaller display
sizes (under 30 inches), the glass sheets can be replaced with plastic.
The rear sheet starts with a polarizing film, the glass sheet, the active matrix
components and addressing electrodes, and then the director. The front sheet is similar,
but lacks the active matrix components, replacing those with the patterned color
filters. Using a multi-step construction process, both sheets can be produced on
the same assembly line. The liquid crystal is placed between the two sheets in a
patterned plastic sheet that divides the liquid into individual shutters and keeps
the sheets at a precise distance from each other.
The critical step in the manufacturing process is the deposition of the active matrix
components. These have a relatively high failure rate, which renders those pixels
on the screen "always on". If there are enough broken pixels, the screen has to be
discarded. The number of discarded panels has a strong effect on the price of the
resulting television sets, and the major downward fall in pricing between 2006 and
2008 was due mostly to improved processes.
To produce a complete television, the shutter assembly is combined with control electronics
and backlight. The backlight for small sets can be provided by a single lamp using
a diffuser or frosted mirror to spread out the light, but for larger displays a single
lamp is not bright enough and the rear surface is instead covered with a number of
separate lamps. Achieving even lighting over the front of an entire display remains
a challenge, and bright and dark spots are not uncommon.
|
Packaging
In a CRT the electron beam is produced by heating a metal filament, which "boils"
electrons off its surface. The electrons are then accelerated and focused in an electron
gun, and aimed at the proper location on the screen using electromagnets. The majority
of the power budget of a CRT goes into heating the filament, which is why the back
of a CRT-based television is hot. Since the electrons are easily deflected by gas
molecules, the entire tube has to be held in vacuum. The atmospheric force on the
front face of the tube grows with the area, which requires ever-thicker glass. This
limits practical CRTs to sizes around 30 inches; displays up to 40 inches were produced
but weighed several hundred pounds, and televisions larger than this had to turn
to other technologies like rear-projection.
The lack of vacuum in an LCD television is one of its advantages; there is a small
amount of vacuum in sets using CCFL backlights, but this is arranged in cylinders
which are naturally stronger than large flat plates. Removing the need for heavy
glass faces allows LCDs to be much lighter than other technologies. For instance,
the Sharp LC-42D65, a fairly typical 42-inch LCD television, weighs 55 lbs including
a stand, while the late-model Sony KV-40XBR800, a 40" 4:3 CRT weighs a massive 304
lbs without a stand, almost six times the weight.
LCD panels, like other flat panel displays, are also much thinner than CRTs. Since
the CRT can only bend the electron beam through a critical angle while still maintaining
focus, the electron gun has to be located some distance from the front face of the
television. In early sets from the 1950s the angle was often as small as 35 degrees
off-axis, but improvements, especially computer assisted convergence, allowed that
to be dramatically improved and, late in their evolution, folded. Nevertheless, even
the best CRTs are much deeper than an LCD; the KV-40XBR800 is 26 inches deep, while
the LC-42D65U is less than 4 inches thick – its stand is much deeper than the screen
in order to provide stability.
LCDs can, in theory, be built at any size, with production yields being the primary
constraint. As yields increased, common LCD screen sizes grew, from 14 to 30", to
42", then 52", and 65" sets are now widely available. This allowed LCDs to compete
directly with most in-home projection television sets, and in comparison to those
technologies direct-view LCDs have a better image quality. Experimental and limited
run sets are available with sizes over 100 inches.
|
Efficiency
LCDs are relatively inefficient in terms of power use per display size, because the
vast majority of light that is being produced at the back of the screen is blocked
before it reaches the viewer. To start with, the rear polarizer filters out over
half of the original un-polarized light. Examining the image above, you can see that
a good portion of the screen area is covered by the cell structure around the shutters,
which removes another portion. After that, each sub-pixel's color filter removes
the majority of what is left to leave only the desired color. Finally, to control
the color and luminance of a pixel as a whole, the light has to be further absorbed
in the shutters. 3M suggests that, on average, only 8 to 10% of the light being generated
at the back of the set reaches the viewer.[3]
For these reasons the backlighting system has to be extremely powerful. In spite
of using highly efficient CCFLs, most sets use several hundred watts of power, more
than would be required to light an entire house with the same technology. As a result,
LCD televisions end up with overall power usage similar to a CRT of the same size.
Using the same examples, the KV-40XBR800 dissipates 245 W,[2] while the LC-42D65
dissipates 235 W.[1] Plasma displays are worse; the best are on par with LCDs, but
typical sets draw much more.
Modern LCD sets have attempted to address the power use through a process known as
"dynamic lighting" (originally introduced for other reasons, see below). This system
examines the image to find areas that are darker, and reduces the backlighting in
those areas. CCFLs are long cylinders that run the length of the screen, so this
change can only be used to control the brightness of the screen as a whole, or at
least wide horizontal bands of it. This makes the technique suitable only for particular
types of images, like the credits at the end of a movie. Sets using LEDs are more
distributed, with each LED lighting only a small number of pixels, typically a 16
by 16 patch. This allows them to dynamically adjust brightness of much smaller areas,
which is suitable for a much wider set of images.
Another ongoing area of research is to use materials that optically route light in
order to re-use as much of the signal as possible. One potential improvement is to
use micro-prisms or di-chromic mirrors to split the light into R, G and B, instead
of absorbing the unwanted colors in a filter. A successful system would improve efficiency
by three times. Another would be to direct the light that would normally fall on
opaque elements back into the transparent portion of the shutters. A number of companies
are actively researching a variety of approaches, and 3M currently sells several
products that route leaked light back toward the front of the screen.
Several newer technologies, OLED, FED and SED, have lower power use as one of their
primary advantages. All of these technologies directly produce light on a sub-pixel
basis, and use only as much power as that light level requires. Sony has demonstrated
36" FED units displaying very bright images drawing only 14 W, less than 1/10 as
much as a similarly sized LCD. OLEDs and SEDs are similar to FEDs in power terms.
The dramatically lower power requirements make these technologies particularly interesting
in low-power uses like laptop computers and mobile phones. These sorts of devices
were the market that originally bootstrapped LCD technology, due to its light weight
and thinness.
|
LCD Television History
For 60 frames per second video, common in North America, each pixel is lit for 17
ms before it has to be re-drawn (20 ms in Europe). Early LCD displays had response
times on the order of hundreds of milliseconds, which made them useless for television.
A combination of improvements in materials technology since the 1970s greatly improved
this, as did the active matrix techniques. By 2000, LCD panels with response times
around 20 ms were relatively common in computer roles. This was still not fast enough
for television use.
A major improvement, pioneered by NEC, led to the first practical LCD televisions.
NEC noticed that liquid crystals take some time to start moving into their new orientation,
but stop rapidly. If the initial movement could be accelerated, the overall performance
would be increased. NEC's solution was to boost the voltage during the "spin up period"
when the capacitor is initially being charged, and then dropping back to normal levels
to fill it to the required voltage. A common method is to double the voltage, but
halve the pulse width, delivering the same total amount of power. Named "Overdrive"
by NEC, the technique is now widely used on almost all LCDs.
Another major improvement in response time was achieved by adding memory to hold
the contents of the display – something that a television needs to do anyway, but
was not originally required in the computer monitor role that bootstrapped the LCD
industry. In older displays the active matrix capacitors were first drained, and
then recharged to the new value with every refresh. But in most cases, the vast majority
of the screen's image does not change from frame to frame. By holding the before
and after values in computer memory, comparing them, and only resetting those sub-pixels
that actually changed, the amount of time spent charging and discharging the capacitors
was reduced. Moreover the capacitors are not drained completely; instead, their existing
charge level is either increased or decreased to match the new value, which typically
requires fewer charging pulses. This change, which was isolated to the driver electronics
and inexpensive to implement, improved response times by about two times.
Together, along with continued improvements in the liquid crystals themselves, and
by increasing refresh rates from 60 Hz to 120 and 240 Hz, response times fell from
20 ms in 2000 to about 2 ms in the best modern displays. But even this is not really
fast enough because the pixel will still be switching while the frame is being displayed.
Conventional CRTs are well under 1 ms, and plasma and OLED displays boast times on
the order of 0.001 ms.
One way to further improve the effective refresh rate is to use "super-sampling",
and it is becoming increasingly common on high-end sets. Since the blurring of the
motion occurs during the transition from one state to another, this can be reduced
by doubling the refresh rate of the LCD panel, and building intermediate frames using
various motion compensation techniques. This smooth’s out the transitions, and means
the backlighting is turned on only when the transitions are settled. A number of
high-end sets offer 120 Hz (in North America) or 100 Hz (in Europe) refresh rates
using this technique. Another solution is to only turn the backlighting on once the
shutter has fully switched. In order to ensure that the display does not flicker,
these systems fire the backlighting several times per refresh, in a fashion similar
to movie projection where the shutter opens and closes several times per frame.
|
Contrast ratio
Even in a fully switched-off state, liquid crystals allow some light to leak through
the shutters. This limits their contrast ratios to about 1600:1 on the best modern
sets, when measured using the ANSI measurement (ANSI IT7.215-1992). Manufacturers
often quote the "Full On/Off" contrast ratio instead, which is about 25% greater
for any given set.
This lack of contrast is most noticeable in darker scenes; in order to display a
color close to black, the LCD shutters have to be turned to almost full opacity,
limiting the number of discrete colors they can display. This leads to "posterizing"
effects and bands of discrete colors that become visible in shadows. Which is why
many reviews of LCD TV's mention the "shadow detail". For contrast, the highest-end
LCD Tv’s offer regular contrast ratios of 5000:1 and the highest-end plasma displays
offer regular contrast ratios as high as 40,000:1. Canon's prototype 55" SED offered
a 50,000:1 contrast ratio.
Since the total amount of light reaching the viewer is a combination of the backlighting
and shuttering, modern sets can use "dynamic backlighting" to improve the contrast
ratio and shadow detail. If a particular area of the screen is dark, a conventional
set will have to set its shutters close to opaque to cut down the light. However,
if the backlighting is reduced by half in that area, the shuttering can be reduced
by half, and the number of available shuttering levels in the sub-pixels doubles.
This is the main reason high-end sets offer dynamic lighting (as opposed to power
savings, mentioned earlier), allowing the contrast ratio across the screen to be
dramatically improved. While the LCD shutters are capable of producing about 1000:1
contrast ratio, by adding 30 levels of dynamic backlighting this is improved to 30,000:1.
However, it should be noted that the area of the screen that can be dynamically adjusted
is a function of the backlighting source. CCFLs are thin tubes that light up many
rows (or columns) across the entire screen at once, and that light is spread out
with diffusers. The CCFL must be driven with enough power to light the brightest
area of the portion of the image in front of it, so if the image is light on one
side and dark on the other, this technique cannot be used successfully. Displays
backlit by full arrays of LEDs have an advantage, because each LED lights only a
small patch of the screen. This allows the dynamic backlighting to be used on a much
wider variety of images. Edge-lit displays do not enjoy this advantage. These displays
have LEDs only along the edges and use a light guide plate covered with thousands
of convex bumps that reflect light from the side-firing LEDs out through the LCD
matrix and filters. LEDs on edge-lit displays can be dimmed only globally, not individually.
The massive on-paper boost this method provides is the reason many sets now place
the "dynamic contrast ratio" in their specifications sheets. There is widespread
debate in the audio-visual world as to whether or not dynamic contrast ratios are
real, or simply marketing speak. Reviewers commonly note that even the best LCD displays
cannot match the contrast ratios or deep blacks of plasma displays, in spite of being
rated, on paper, as having much higher ratios.
|
Color gamut
Color on an LCD television is produced by filtering down a white source and then
selectively shuttering the three primary colors relative to each other. The accuracy
and quality of the resulting colors are thus dependent on the backlighting source
and its ability to evenly produce white light. The CCFL’s used in early LCD televisions
were not particularly white, and tended to be strongest in greens. Modern backlighting
has improved this, and sets commonly quote a color space covering about 75% of the
NTSC 1953 color gamut. Using white LEDs as the backlight improves this further.
In September 2009 Nanoco Group announced that it had signed a joint development agreement
with a major Japanese electronics company under which it will design and develop
quantum dots for use in LED backlights in LCD televisions. Quantum dots are valued
for displays, because they emit light in very specific gaussian distributions. This
can result in a display that more accurately renders the colors that the human eye
can perceive. Quantum dots also require very little power since they are not color
filtered.
|
Early efforts
Passive matrix LCD’s first became common in the 1980’s for various portable computer
roles. At the time they competed with plasma displays in the same market space. The
LCD’s had very slow refresh rates that blurred the screen even with scrolling text,
but their light weight and low cost were major benefits. Screens using reflective
LCD’s required no internal light source, making them particularly well suited to
laptop computers.
Refresh rates were far too slow to be useful for television, but at the time there
was no pressing need for new television technologies. Resolutions were limited to
standard definition, although a number of technologies were pushing displays towards
the limits of that standard; Super VHS offered improved color saturation, and DVDs
added higher resolutions as well. Even with these advances, screen sizes over 30"
were rare as these formats would start to appear blocky at normal seating distances
when viewed on larger screens. Projection systems were generally limited to situations
where the image had to be viewed by a larger audience.
Nevertheless, some experimentation with LCD televisions took place during this period.
In 1988, Sharp Corporation introduced the first commercial LCD television, a 14"
model. These were offered primarily as boutique items for discerning customers, and
were not aimed at the general market. At the same time, plasma displays could easily
offer the performance needed to make a high quality display, but suffered from low
brightness and very high power consumption. However, a series of advances led to
plasma displays outpacing LCD’s in performance improvements, starting with Fujitsu's
improved construction techniques in 1979, Hitachi's improved phosphors in 1984, and
AT&T’s elimination of the black areas between the sub-pixels in the mid-1980’s. By
the late 1980’s, plasma displays were far in advance of LCD’s.
|
High Definition
It was the slow standardization of high definition television that first produced
a market for new television technologies. In particular, the wider 16:9 aspect ratio
of the new material was difficult to build using CRTs; ideally a CRT should be perfectly
circular in order to best contain its internal vacuum, and as the aspect ratio becomes
more rectangular it becomes more difficult to make the tubes. At the same time, the
much higher resolutions these new formats offered were lost at smaller screen sizes,
so CRTs faced the twin problems of becoming larger and more rectangular at the same
time. LCD’s of the era were still not able to cope with fast-moving images, especially
at higher resolutions, and from the mid-1990s the plasma display was the only real
offering in the high resolution space.
Through the halting introduction of HDTV in the mid-1990s into the early 2000’s,
plasma displays were the primary high-definition display technology. However, their
high cost, both manufacturing and on the street, meant that older technologies like
CRTs maintained a footprint in spite of their disadvantages. LCD, however, was widely
considered to be unable to scale into the same space, and it was widely believed
that the move to high-definition would push it from the market entirely.
This situation changed rapidly. Contrary to early optimism, plasma displays never
saw the massive economies of scale that were expected, and remained expensive. Meanwhile,
LCD technologies like Overdrive started to address their ability to work at television
speeds. Initially produced at smaller sizes, fitting into the low-end space that
plasmas could not fill, LCD’s started to experience the economies of scale that plasmas
failed to achieve. By 2004, 32" models were widely available, 42" sets were becoming
common, and much larger prototypes were being demonstrated.
|
Market takeover
Although plasmas continued to hold an arguable picture quality edge over LCD’s, and
even a price advantage for sets at the critical 42" size and larger, LCD prices started
falling rapidly in 2006 while their screen sizes were increasing at a similarly furious
rate. By late 2006, several vendors were offering 42" LCD’s, albeit at a price premium,
encroaching on plasma's only stronghold. More critically, LCD’s offer higher resolutions
and true 1080p support, while plasmas were stuck at 720p, which made up for the price
difference.
Predictions that prices for LCD’s would drop rapidly through 2007 led to a "wait
and see" attitude in the market, and sales of all large-screen televisions stagnated
while customers watched to see if this would happen. Plasmas and LCD’s reached price
parity in 2007, at which point the LCD's higher resolution was a winning point for
many sales. By late 2007, it was clear that LCD’s were going to outsell plasmas during
the critical Christmas sales season. This was in spite of the fact that plasmas continued
to hold an image quality advantage, but as the president of Chunghwa Picture Tubes
noted after shutting down their plasma production line, "Globally, so many companies,
so many investments, so many people have been working in this area, on this product.
So they can improve so quickly."
When the sales figures for the 2007 Christmas season were finally tallied, pundits
were surprised to find that LCD’s had not only outsold plasma, but also outsold CRTs
during the same period. This evolution drove competing large-screen systems from
the market almost overnight. Plasma had overtaken rear-projection systems in 2005,
and in 2007 the last remaining consumer rear-projection systems were gone. The same
was true for CRTs, which lasted only a few months longer; Sony ended sales of their
famous Trinitron in most markets in 2007, and shut down the final plant in March
2008. The February 2009 announcement that Pioneer Electronics was ending production
of the plasma screens was widely considered the tipping point in that technology's
history as well.
LCD's dominance in the television market accelerated rapidly. It was the only technology
that could scale both up and down in size, covering both the high-end market for
large screens in the 40 to 50" class, as well as customers looking to replace their
existing smaller CRT sets in the 14 to 30" range. Building across these wide scales
quickly pushed the prices down across the board.
Current sixth-generation panels by major manufacturers such as Samsung, Sony, LG
Display, and the Sharp Corporation have announced larger sized models:
* In October 2004, Sharp announced the successful manufacture of a 65" panel.
* In March 2005, Samsung announced an 82" LCD panel.
* In August 2006, LG Display Consumer Electronics announced a 100" LCD television
* In January 2007, Sharp displayed a 108" LCD panel under the AQUOS brand name
at CES in Las Vegas.
|